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Abstract: The dynamic behaviour of a nonlinear plate embedded into a fractional derivative viscoelastic medium
is studied by the method of multiple time scales under the conditions of the combinational internal resonances of
additive-difference type using a newly developed approach resulting in uncoupling the linear parts of equations of
motion of the plate. The influence of viscosity on the energy exchange mechanism between interacting nonlinear
modes has been analyzed. The phenomenological analysis carried out for the combinational internal resonances
of the additive type with the help of the phase portraits constructed for different magnitudes of the plate param-
eters reveals the great variety of vibrational motions: stationary vibrations, two-sided energy exchange between
two subsystems under consideration, and one-sided energy interchange resulting in the complete one-sided energy
transfer.

Key–Words: Nonlinear elastic plate, Free nonlinear damped vibrations, Combinational internal resonances, Frac-
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1 Introduction
It is well known that the nonlinear vibrations of plates
are an important area of applied mechanics, since
plates are used as structural elements inmany fields of
industry and technology [1]. Extensive review of re-
cent research developments in the field could be found
in Amabili [2, 3] and Sathyamoorthy [4].

Moreover, nonlinear vibrations could be accom-
panied by such a phenomenon as the internal reso-
nance, resulting in multimode response with a strong
interaction of the modes involved [5] accompanied by
the energy exchange phenomenon.

Nonlinear free vibrations of a thin plate embed-
ded into a fractional derivative viscoelastic medium
have been considered recently [6, 7] for the case when
the plate motion is described by three coupled nonlin-
ear differential equations. It has been shown that the
occurrence of the internal resonance results in the in-
teraction of modes corresponding to the mutually or-
thogonal displacements. As this takes place, the dis-
placement functions are determined in terms of eigen-
functions of linear vibrations. The procedure result-
ing in decoupling linear parts of equations has been
proposed with the further utilization of the method of

multiple scales for solving nonlinear governing equa-
tions of motion, in so doing the amplitude functions
are expanded into power series in terms of the small
parameter and depend on different time scales.

It has been shown that the phenomenon of inter-
nal resonance could be very critical, since in the thin
plate under consideration the internal resonance is al-
ways present. Moreover, its type depends on the order
of smallness of the viscosity involved into consider-
ation. Thus, at the ε-order, damped vibrations occur
within the two-to-one and one-to-one-to-two internal
resonance [6]. Other types of the internal resonance,
such as one-to-one, one-to-one-to-one, and combina-
tional resonances of the additive and difference types
could be found at ε2-order [7, 8], i.e., the type of the
resonance depends on the order of smallness of the
fractional derivative entering in the equations of mo-
tion of the plate.

The phenomenological analysis has been carried
out in [9] for the one-to-one internal resonance cou-
pling two interacting modes using the hydrodynamic
analogy suggested in [10].

In the present paper, the qualitative analysis of
the combinational internal resonance of the additive
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type, resulting in coupling of three different modes, is
carried out with the help of the phase portraits con-
structed for different magnitudes of the plate parame-
ters, what allows us to study the great variety of vibra-
tional motions: stationary vibrations, periodic energy
exchange between three subsystems under considera-
tion, and one-sided energy interchange resulting in the
complete one-sided energy transfer.

2 Governing Equations Describing
the Additive Combinational Reso-
nance ω1 + ω2 = 2ω3

In the recent paper by Rossikhin et al. [7] it has been
shown that the following three combinational reso-
nances could occur during vibrations of a free sup-
ported non-linear thin rectangular plate (Fig. 1):

ω1 + ω2 = 2ω3, (1)
ω1 − ω2 = 2ω3, (2)
ω2 − ω1 = 2ω3, (3)

where ω1 and ω2 are some particular natural frequen-
cies of in-plane vibrations, and ω3 is one of the natural
frequencies of the out-of-plane modes.

Figure 1: Scheme of a freely supported rectangular
plate

Reference to (1)-(3) shows that the combinational
resonance (1) is of the additive type, while combi-
national resonances (2) and (3) are of the difference
type. In the present paper, we will focus our atten-
tion on the qualitative analysis of the case of the ad-
ditive ω1 + ω2 = 2ω3 combinational internal reso-
nance, when two different modes of in-plane vibra-
tions are coupled with a certain mode of out-of-plane
vibrations.

Using the approach suggested in [7], it could be
shown that in the case of the additive combinational
resonance (1) the set of equations describing the mod-
ulations of amplitudes ai and phases ϕi (i = 1, 2, 3)

has the following form:(
a2
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1 ζ1k8a1a2a
2
3 sin δ, (4)(

a2
2

). + s2a
2
2 = −2ω−1

2 ζ2k7a1a2a
2
3 sin δ, (5)(

a2
3

). + s3a
2
3 = ω−1

3 (ζ13k8 + ζ23k7)a1a2a
2
3 sin δ,(6)

ϕ̇1 =
1
2
σ1 + ω−1

1 ζ1k5 a
2
3

+ ω−1
1 ζ1k8a

−1
1 a2a

2
3 cos δ, (7)

ϕ̇2 =
1
2
σ2 + ω−1

2 ζ2k6 a
2
3

+ ω−1
2 ζ2k7a1a

−1
2 a2

3 cos δ, (8)

ϕ̇3 =
1
2
σ3 +

1
2
ω3

−1ζ13k7a
2
1 +

1
2
ω3

−1ζ23k8a
2
2

+
1
2
ω3

−1 (ζ13k2 + ζ23k4) a2
3

+
1
2
ω3

−1 (ζ13k8 + ζ23k7) a1a2 cos δ, (9)

where the phase difference has the form δ = 2ϕ3 −
ϕ2 − ϕ1, an overdot denotes the differentiation with
respect to T2, ζm, ζmn and kj (m = 1, 2, n =
3, j = 1, 2, ...8) are some coefficients depending
on the interacting modes [7], si = µiτ

γ
i ω

γ−1
i sinψ,

σi = µiτ
γ
i ω

γ−1
i cosψ (i = 1, 2, 3), ψ = 1

2 πγ, τi
is the relaxation time of the ith generalized displace-
ment, µi is the viscosity coefficient of the ith mode,
and 0 < γ ≤ 1 is the fractional parameter [7].

Introducing new functions ξ1(T2), ξ2(T2), and
ξ3(T2) such that

a2
1 =

ζ1k8

ω1
ξ1 exp(−s1T2),

a2
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ζ2k7

ω2
ξ2 exp(−s2T2), (10)

a2
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ω3
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and adding Eqs. (4)-(6) with due account for (10)
yield

ξ̇1e
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while subtracting (7) and (8) from the doubled (9) we
obtain
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where 2Σ = 2σ3 − σ1 − σ2.
Considering (10), equations (4), (6) and (12)

could be rewritten in the following form:

ξ̇1 = −2b
√
ξ1ξ2 ξ3e

−(s3+1/2s2−1/2s1)T2 sin δ, (13)

ξ̇3 = b
√
ξ1ξ2 ξ3e

−1/2(s2+s1)T2 sin δ, (14)
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−s1T2 +K2ξ2e
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−s3T2

+
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where

b =
ζ13k8 + ζ23k7

ω3

√
ζ1ζ2k7k8

ω1ω2
,

K1 =
ζ1ζ13k7k8

ω1ω3
, K2 =

ζ2ζ23k7k8

ω2ω3
,
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(
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ω3
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)
The non-linear set of Eqs. (11), (13), (14), and

(15), with the initial conditions

ξ1

∣∣∣
T2=0

= ξ1 0, ξ2

∣∣∣
T2=0

= ξ2 0,

ξ3

∣∣∣
T2=0

= ξ3 0, δ
∣∣∣
T2=0

= δ0 (16)

completely describe the vibrational process of the me-
chanical system being investigated under the condi-
tion of the additive combinational internal resonance
2ω3 = ω1 + ω2, and could be solved numerically.

In the particular case at Σ = 0 and s1 = s2 =
s3 = s, Eq. (11) has the form

ξ̇1 + ξ̇2 + 4ξ̇3 = 0, (17)

whence it follows that

ξ1 + ξ2 + 4ξ3 = E0, (18)

and

ξ1 = 2E0(c1−ξ), ξ2 = 2E0(c2−ξ), ξ3 = E0(c3+ξ),
(19)

where c1, c2, and c3 are constants of integration such
that

2c1 + 2c2 + 4c3 = 1.

Considering (19), Eqs. (13) and (15) are reduced
to

ξ̇ = 2bE0

√
(c1 − ξ)(c2 − ξ) (c3 + ξ)e−sT2 sin δ,

(20)

δ̇ = 2E0 [K1(c1−ξ)+K2(c2−ξ)+K3(c3+ξ)]e−sT2

+ bE0

[
2
√

(c1 − ξ)(c2 − ξ)− (c3 + ξ)

√
c2 − ξ
c1 − ξ

− (c3 + ξ)

√
c1 − ξ
c2 − ξ

]
e−sT2 cos δ. (21)

The set of equations (20) and (21) could be inte-
grated, resulting in its first integral

G(ξ, δ) = (c3 + ξ)
√

(c1 − ξ)(c2 − ξ) cos δ

− 1
2
K1b

−1(c1 − ξ)2 −
1
2
K2b

−1(c2 − ξ)2

+
1
2
K3b

−1(c3 + ξ)2 = G0(ξ0, δ0). (22)

This first integral (22) defines the stream function
G(ξ, δ) such that

vξ = ξ̇ = −2bE0
∂G

∂δ
e−sT2 ,

vδ = δ̇ = 2bE0
∂G

∂ξ
e−sT2 ,

which describes steady-state vibrations of an elastic
plate decaying with time.

3 Numerical Investigations

Now let us carry out the qualitative analysis of the case
of the additive ω1 + ω2 = 2ω3 combinational inter-
nal resonance, when two different modes of in-plane
vibrations are coupled with a certain mode of out-of-
plane vibrations.

For this case, the stream-function G(ξ, δ) is de-
fined by relationship (22), and the phase portrait to be
constructed according to (22) depends essentially on
the magnitudes of the coefficients K1, K2, and K3.

3.1 The Case K1 = K2 = K3 = 0

For this case, the stream-function G(ξ, δ) (22) is re-
duced to

G(ξ, δ) = (c3 + ξ)
√

(c1 − ξ)(c2 − ξ) cos δ
= G0(ξ0, δ0), (23)
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whence it follows that the stream-function also de-
pends on the constants of integration c1, c2, and c3.

Eliminating δ from (20) and (21) and integrating
over the time the resulting equation, we obtain∫ ξ

ξ0

dξ√
(c3 + ξ)2(c1 − ξ)(c2 − ξ)−G2

0

=
2bE0

s

(
1− e−sT2

)
. (24)

The solution of (24) allows one to find the value
ξ(T2), and thus, to solve the problem under consider-
ation.

3.1.1 The Subcase c1 = c2 = 0 and c3 = 1
4

The stream function (23) takes the form

G(ξ, δ) = (
1
4

+ ξ)(−ξ) cos δ = G0(ξ0, δ0).

The stream-lines of the phase fluid in the phase
plane ξ − δ are presented in Fig. 2. Magnitudes
of G are indicated by digits near the curves which
correspond to the stream-lines; the flow direction of
the phase fluid elements are shown by arrows on the
stream-lines.

In the case under consideration, the velocities of
the phase fluid particles could be calculated as follows

vξ = ξ̇ = −2bE0

(
1
4

+ ξ

)
ξ sin δ e−sT2 ,

vδ = δ̇ = −2bE0

(
1
4

+ 2ξ
)

cos δ e−sT2 .

Reference to Figure 2 shows that the phase fluid
flows within the circulation zones, which tend to be lo-
cated around the perimeter of the rectangles bounded
by the lines ξ = 0, ξ = 1, and δ = ±(π/2) ± 2πn
(n = 0, 1, 2, ...). As this takes place, the flow in each
such rectangle becomes isolated. On three sides of
the rectangle, namely: ξ = 0 and δ = ±(π/2)± 2πn
(n = 0, 1, 2, ...), G = 0 and inside each rectangle the
value G preserves its sign. Along the side ξ = 1 the
stream function G changes periodically attaining its
extreme magnitudes at the points with the coordinates
ξ = 1, δ = ±πn (n = 0, 1, 2, ...) (Fig. 2).

The lines with G = 0 are separatrixes which are
connected with each other at the stationary saddle-
like points with coordinates ξ = ξ0 = 0, δ = δ0 =
±(π/2)± 2πn.

All stream-lines inside the rectangle are non-
closed, in so doing their initial and terminal points
locate on the line ξ = 1. The distribution of the ve-
locities of the phase fluid points is shown in Fig. 2

along the lines ξ = 0, 0.3, 0.5, 0.7, 1 and δ = 0 and
−π

2 , wherein v∗δ or ξ = vδ or ξ

2bE0
.

Along the line ξ = 0 the phase modulated regime
decaying with time is realized

ξ(T2) = ξ0 = 0

ln
∣∣∣tan

(
1
2
δ +

π

4

)∣∣∣ ∣∣∣δ
δ0

= −bE0

2s
(
1− e−sT2

)
.

Along the lines δ = ±(π/2) ± 2πn (n =
0, 1, 2, ...) in the presence of conventional viscosity
the solution could be written for the amplitude modu-
lated regimes decaying with time

ln
∣∣∣ ξ

1
4 + ξ

∣∣∣ξ
ξ0

= ∓bE0

2s
(
1− e−sT2

)
,

δ(T2) = δ0 = ±π
2
± 2πn, n = 0, 1, 2, ...

3.1.2 The Subcase c1 = c2 = c3 = 1
8

The stream function (23) takes the form

G(ξ, δ) = (
1
64
− ξ2) cos δ = G0(ξ0, δ0).

The stream-lines of the phase fluid in the phase
plane ξ − δ are presented in Figure 3, from which it
is evident that the infinite channel (−∞ < δ < ∞)
bounded by the lines ξ = 0 and ξ = 1 is divided
into a set of rectangles by the lines ξ = 1

8 and δ =
±π

2 ± 2πn (n = 0, 1, 2, ...). Within each rectangle,
the value of G preserves its sign and all stream-lines
are nonclosed with initial and terminal points locating
on the boundary lines ξ = 0 and ξ = 1, along which
the stream-function changes periodically attaining its
extreme magnitudes at the points with the coordinates
ξ = 1, δ = ±πn (n = 0, 1, 2, ...) and ξ = 0, δ =
±πn (n = 0, 1, 2, ...) (Fig. 3).

In the case under consideration, the velocities of
the phase fluid particles could be calculated as follows

vξ = ξ̇ = 2bE0

(
1
64
− ξ2

)
sin δ e−sT2 ,

vδ = δ̇ = 2bE0 (−2ξ) cos δ e−sT2

whence it follows that along the separatrixes with
G(ξ, δ) = 0, which are the boundaries of rectangles,
the following analytical solutions could be found:
the phase modulated regime along the line ξ = 1/8

ξ(T2) = ξ0 =
1
8

ln
∣∣∣tan

(
1
2
δ +

π

4

) ∣∣∣δ
δ0

= − bE0

2s
(
1− e−sT2

)
,
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Figure 2: Phase portrait for the case of the additive combinational internal resonance at K1 = K2 = K3 = 0 and
c1 = c2 = 0, c3 = 1

4

and along the lines δ = ±(π/2) ± 2πn (n =
0, 1, 2, ...) the amplitude modulated regimes decaying
with time∣∣∣ln ξ − 1

8

ξ + 1
8

∣∣∣ξ
ξ0

= ∓bE0

2s
(
1− e−sT2

)
,

δ(T2) = δ0 = ±π
2
± 2πn, n = 0, 1, 2, ...

in so doing the separatrixes are connected with each
other at the saddle-like points with coordinates ξ =
ξ0 = 1/8, δ = δ0 = ±(π/2)± 2πn corresponding to
unstable stationary regimes.

On the low boundary ξ = 0 at any magnitude of
the phase difference δ the velocity vδ = δ̇(T2) = 0,

while the velocity vξ = ξ̇(δ, T2) vanishes to zero at
δ = ±πn (n = 0, 1, 2, ...). Therefore, the center-like
points with coordinates ξ = ξ0 = 0, δ = δ0 = 2πn,
G = 1/64 and ξ = ξ0 = 0, δ = δ0 = π ± 2πn,
G = −1/64 correspond to stable stationary regimes.

3.1.3 The Subcase c1 = c2 = 1
4 , c3 = 0

The stream function (23) takes the form

G(ξ, δ) = (
1
4
− ξ)ξ cos δ = G0(ξ0, δ0).

The stream-lines of the phase fluid in the phase
plane ξ − δ are presented in Fig. 4. Reference to Fig-
ure 4 shows that the infinite channel (−∞ < δ < ∞)
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Figure 3: Phase portrait for the case of the additive combinational internal resonance at K1 = K2 = K3 = 0 and
c1 = c2 = c3 = 1

8

bounded by the lines ξ = 0 and ξ = 1 is divided
into a set of rectangles by the lines ξ = 1

4 and
δ = ±π

2 ± 2πn (n = 0, 1, 2, ...). Within each
rectangle, the value of G preserves its sign. As this
takes place, in the upper rectangles all stream-lines
are nonclosed with initial and terminal points locat-
ing on the boundary line ξ = 1, along which the
stream-function changes periodically attaining its ex-
treme magnitudes at the points with the coordinates
ξ = 1, δ = ±πn (n = 0, 1, 2, ...) (Fig. 4), while along
the line ξ = 0 the magnitude of the stream function is
constant and equal toG = 0, and in the bottom rectan-
gles all stream-lines are closed. The functionG attains
its extreme magnitudes at the points with the coordi-
nates ξ = 1, δ = ±πn (n = 0, 1, 2, ...) and ξ = 1

8 ,
δ = ±πn (n = 0, 1, 2, ...) within the upper and bot-

tom rectangles, respectively, in so doing the points
with the coordinates ξ = ξ0 = 1

8 , δ = δ0 = ±πn
are centers corresponding to stationary motions.

In the case under consideration, the velocities of
the phase fluid particles could be calculated as follows

vξ = ξ̇ = 2bE0

(
1
4
− ξ
)
ξ sin δ e−sT2 ,

vδ = δ̇ = 2bE0

(
1
4
− 2ξ

)
cos δ e−sT2 ,

whence it follows that along the separatrixes with
G(ξ, δ) = 0, which are the boundaries of rectangles,
the following analytical solutions could be found:

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Y. A. Rossikhin, M. V. Shitikova, J. C. Ngenzi

E-ISSN: 2224-3429 265 Volume 10, 2015



Figure 4: Phase portrait for the case of the additive combinational internal resonance at K1 = K2 = K3 = 0 and
c1 = c2 = 1

4 , c3 = 0

the phase modulated regime along the line ξ = 0

ξ(T2) = ξ0 = 0

ln
∣∣∣tan

(
1
2
δ +

π

4

) ∣∣∣δ
δ0

=
bE0

2s
(
1− e−sT2

)
,

the phase modulated regime along the line ξ = 1/4

ξ(T2) = ξ0 =
1
4

ln
∣∣∣tan

(
1
2
δ +

π

4

) ∣∣∣δ
δ0

=
3bE0

2s
(
1− e−sT2

)
,

and along the lines δ = ±(π/2) ± 2πn (n =
0, 1, 2, ...) the amplitude modulated regimes decaying

with time

∣∣∣ln ξ

ξ − 1
4

∣∣∣ξ
ξ0

= ∓bE0

2s
(
1− e−sT2

)
,

δ(T2) = δ0 = ±π
2
± 2πn, n = 0, 1, 2, ...

in so doing the separatrixes are connected with each
other at the saddle-like points with coordinates ξ =
ξ0 = 1/4, δ = δ0 = ±(π/2) ± 2πn and ξ = ξ0 = 0,
δ = δ0 = ±(π/2)±2πn (n = 0, 1, 2, ...) correspond-
ing to unstable stationary regimes.

Comparison of Figures 3 and 4 shows that center-
like points with G = ±1/64 shifted from the line ξ =
0 to the line ξ = 1/8.
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3.1.4 The Subcase c1 = c2 = 1
2 , c3 = −1

4

The stream function (23) takes the form

G(ξ, δ) =
(
ξ − 1

4

)(
1
2
− ξ
)

cos δ = G0(ξ0, δ0),

and in the case under consideration the velocities of
the phase fluid particles could be calculated as follows

vξ = ξ̇ = 2bE0

(
ξ − 1

4

)(
1
2
− ξ
)

sin δ e−sT2 ,

vδ = δ̇ = 2bE0

(
3
4
− 2ξ

)
cos δ e−sT2 .

The stream-lines of the phase fluid in the phase
plane ξ − δ are presented in Fig. 5. Reference to Fig-
ure 5 shows that the infinite channel (−∞ < δ < ∞)
bounded by the lines ξ = 0 and ξ = 1 is divided
into a set of rectangles by the lines ξ = 1

4 , ξ = 1
2 ,

and δ = ±π
2 ± 2πn (n = 0, 1, 2, ...), along which

G(ξ, δ) = 0. Within each rectangle, the value of
G preserves its sign. As this takes place, in the up-
per rectangles all stream-lines are nonclosed with ini-
tial and terminal points locating on the boundary line
ξ = 1, along which the stream-function changes peri-
odically attaining its extreme magnitudes at the points
with the coordinates ξ = 1, δ = ±πn (n = 0, 1, 2, ...)
(Fig. 5). Within the bottom rectangles, all stream-lines
are also nonclosed with initial and terminal points lo-
cating on the boundary line ξ = 0, along which the
stream-function changes periodically attaining its ex-
treme magnitudes at the points with the coordinates
ξ = 0, δ = ±πn (n = 0, 1, 2, ...). Within the mid-
dle rectangles all stream-lines are closed correspond-
ing to periodic changes in amplitudes and phase dif-
ference, in so doing the function G attains its extreme
magnitudes at the points with the coordinates ξ = 3

8 ,
δ = ±πn (n = 0, 1, 2, ...) which are the center-like
points corresponding to stationary motions.

Comparison of Figures 4 and 5 shows that the
zone of the width of 1/4 containing closed stream-
lines is shifted upwards.

Along the separatrixes with G(ξ, δ) = 0, which
are the boundaries of rectangles, the following analyt-
ical solutions could be found:
the phase modulated regime along the line ξ = 1/4

ξ(T2) = ξ0 =
1
4

ln
∣∣∣tan

(
1
2
δ +

π

4

) ∣∣∣δ
δ0

=
bE0

2s
(
1− e−sT2

)
,

the phase modulated regime along the line ξ = 1/2

ξ(T2) = ξ0 =
1
2

ln
∣∣∣tan

(
1
2
δ +

π

4

) ∣∣∣δ
δ0

= −bE0

2s
(
1− e−sT2

)
,

and along the lines δ = ±(π/2) ± 2πn (n =
0, 1, 2, ...) the amplitude modulated regimes decaying
with time∣∣∣ln ξ − 1

2

ξ − 1
4

∣∣∣ξ
ξ0

= ∓bE0

2s
(
1− e−sT2

)
,

δ(T2) = δ0 = ±π
2
± 2πn, n = 0, 1, 2, ...

in so doing the separatrixes are connected with each
other at the saddle-like points with coordinates ξ =
ξ0 = 1/4, δ = δ0 = ±(π/2)±2πn and ξ = ξ0 = 1/2,
δ = δ0 = ±(π/2)±2πn (n = 0, 1, 2, ...) correspond-
ing to unstable stationary regimes.

3.1.5 The Subcase c1 = c2 = 1, c3 = −3
4

The stream function (23) takes the form

G(ξ, δ) =
(
ξ − 3

4

)
(1− ξ) cos δ = G0(ξ0, δ0),

and in the case under consideration the velocities of
the phase fluid particles could be calculated as follows

vξ = ξ̇ = 2bE0

(
ξ − 1

4

)(
1
2
− ξ
)

sin δ e−sT2 ,

vδ = δ̇ = 2bE0

(
3
4
− 2ξ

)
cos δ e−sT2 .

The stream-lines of the phase fluid in the phase
plane ξ−δ are presented in Fig. 6. Reference to Figure
6 shows that the infinite channel (−∞ < δ < ∞)
bounded by the lines ξ = 0 and ξ = 1 is divided
into a set of rectangles by the lines ξ = 3

4 and δ =
±π

2 ± 2πn (n = 0, 1, 2, ...), along which G(ξ, δ) =
0. Within each rectangle, the value of G preserves its
sign.

As this takes place, within the bottom rectan-
gles, all stream-lines are nonclosed with initial and
terminal points locating on the boundary line ξ = 0,
along which the stream-function changes periodically
attaining its extreme magnitudes at the points with
the coordinates ξ = 0, δ = ±πn (n = 0, 1, 2, ...).
Within the upper rectangles all stream-lines are closed
corresponding to periodic changes in amplitudes and
phase difference, in so doing the function G attains
its extreme magnitudes at the points with the coordi-
nates ξ = 3

8 , δ = ±πn (n = 0, 1, 2, ...) which are
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Figure 5: Phase portrait for the case of the additive combinational internal resonance at K1 = K2 = K3 = 0 and
c1 = c2 = 1

2 , c3 = −1
4

the center-like points corresponding to stationary mo-
tions.

Comparison of Figures 5 and 6 shows that the
zone of the width of 1/4 containing closed stream-
lines is shifted upwards once again, and its lower and
upper boundaries ξ = 3/4 and ξ = 1 correspond to
the following phase modulated regimes with G0 = 0:

ξ(T2) = ξ0 = 1

ln
∣∣∣tan

(
1
2
δ +

π

4

) ∣∣∣δ
δ0

= − bE0

2s
(
1− e−sT2

)
,

and

ξ(T2) = ξ0 =
3
4

ln
∣∣∣tan

(
1
2
δ +

π

4

) ∣∣∣δ
δ0

=
bE0

2s
(
1− e−sT2

)
.

Along the lines δ = ±(π/2) ± 2πn (n =
0, 1, 2, ...) with G0 = 0 the amplitude modulated

regimes decaying with time are realized∣∣∣ln ξ − 1
ξ − 3

4

∣∣∣ξ
ξ0

= ∓bE0

2s
(
1− e−sT2

)
,

δ(T2) = δ0 = ±π
2
± 2πn, n = 0, 1, 2, ...

in so doing the separatrixes are connected with each
other at the saddle-like points with coordinates ξ =
ξ0 = 3/4, δ = δ0 = ±(π/2) ± 2πn and ξ = ξ0 = 1,
δ = δ0 = ±(π/2) ± 2πn corresponding to unstable
stationary regimes.

3.1.6 The Subcase c1 = 2
5 , c2 = 3

5 , c3 = −1
4

In this case the stream function (23) takes the form

G(ξ, δ) =
(
ξ − 1

4

)√(
2
5
− ξ
)(

3
5
− ξ
)

cos δ

= G0(ξ0, δ0),
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Figure 6: Phase portrait for the case of the additive combinational internal resonance at K1 = K2 = K3 = 0 and
c1 = c2 = 1, c3 = −3

4

and the velocities of the phase fluid particles could be
calculated as follows

vξ = ξ̇ = 2bE0

(
ξ − 1

4

)√(
2
5
− ξ
)(

3
5
− ξ
)

× sin δ e−sT2 ,

vδ = δ̇ = 2bE0

[√(
2
5
− ξ
)(

3
5
− ξ
)

−
(
ξ − 1

4

)
(1− 2ξ)

2
√(

2
5 − ξ

) (
3
5 − ξ

)
 cos δ e−sT2 .

The stream-lines are presented in Figure 7, from
which it is evident that if the constants c1 and c2 are
not equal then along the channel there exists a zone
free from stream-lines.

As this takes place, the upper zone of the infinite
channel (−∞ < δ < ∞) is bounded by the lines
ξ = 3/5 and ξ = 1 and it is divided into a set of rect-
angles by the lines δ = ±π

2 ± 2πn (n = 0, 1, 2, ...),
along which G(ξ, δ) = 0. Within each rectangle,
the value of G preserves its sign, and all stream-lines
are nonclosed with initial and terminal points locat-
ing on the boundary line ξ = 1, along which the
stream-function changes periodically attaining its ex-
treme magnitudes at the points with the coordinates
ξ = 1, δ = ±πn (n = 0, 1, 2, ...) (Fig. 7).

The lower zone is bounded by the lines ξ = 0
and ξ = 2/5. It is subdivided into two subzones by
the line ξ = 1/4 and is divided into a set of rectan-
gles by the lines δ = ±π

2 ± 2πn (n = 0, 1, 2, ...),
along which G(ξ, δ) = 0. Within the bottom rect-
angles, all stream-lines are nonclosed with initial and
terminal points locating on the boundary line ξ = 0,
along which the stream-function changes periodically
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Figure 7: Phase portrait for the case of the additive combinational internal resonance at K1 = K2 = K3 = 0 and
c1 = 2

5 , c2 = 3
5 , c3 = −1

4

attaining its extreme magnitudes at the points with the
coordinates ξ = 0, δ = ±πn (n = 0, 1, 2, ...). Within
the middle rectangles all stream-lines are closed corre-
sponding to periodic changes in amplitudes and phase
difference, in so doing the function G attains its ex-
treme magnitudes at the points with the coordinates
ξ = 0.348, δ = ±πn (n = 0, 1, 2, ...) which are
the center-like points corresponding to stationary mo-
tions.

Along the boundary ξ = 1/4 with G = 0 the
phase modulated regime takes place

ξ(T2) = ξ0 =
1
4

ln
∣∣∣tan

(
1
2
δ +

π

4

) ∣∣∣δ
δ0

=
√

21 bE0

10s
(
1− e−sT2

)
,

in so doing the points with coordinates ξ = ξ0 = 1/4,
δ = δ0 = ±(π/2) ± 2πn are the saddle-like points

connecting the separatrixes with each other and corre-
sponding to unstable stationary regimes.

From Figure 7 it is seen that on the lines ξ = 2/5
and ξ = 3/5 bounding the empty zone the velocity of
the phase fluid particles tends to infinity, that is why
the transition of the particles from the points with co-
ordinates ξ = ξ0 = 3/5, δ = −π/2 ± 2πn to the
points ξ = ξ0 = 3/5, δ = π/2 ± 2πn, as well as
from the points ξ = ξ0 = 3/5, δ = π/2 ± 2πn to
the points ξ = ξ0 = 3/5, δ = −π/2 ± 2πn occurs
instantaneously.

3.2 The Influence of Coefficients K1, K2, and
K3 on the Character of the Phase Por-
traits

Now we will trace the influence of parameters K1,
K2, and K3 on the character of the phase portraits at
the fixed magnitudes of the coefficients c1, c2, and c3.
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3.2.1 The Case c1 = c2 = 1
4 and c3 = 0

First we will study the subcase when K1b
−1 = 1,

while K2 = K3 = 0. Then the stream function (22)
takes the form

G(ξ, δ) = (
1
4
− ξ)ξ cos δ − 1

2
(
1
4
− ξ)2 = G0(ξ0, δ0).

In the case under consideration, the velocities of
the phase fluid particles could be calculated as follows

vξ = ξ̇ = 2bE0

(
1
4
− ξ
)
ξ sin δ e−sT2 ,

vδ = δ̇ = 2bE0

[(
1
4
− 2ξ

)
cos δ − ξ +

1
4

]
e−sT2 ,

whence it follows that along the separatrixes with
G(ξ, δ) = 0 the following analytical solutions could
be found:
the phase modulated regime along the line ξ = 1/4

ξ(T2) = ξ0 =
1
4

ln
∣∣∣tan

(
1
2
δ +

π

4

) ∣∣∣δ
δ0

= −bE0

2s
(
1− e−sT2

)
,

and along the curved parts of the separatrixes∣∣∣ln ξ

ξ − 1
4

∣∣∣ξ
ξ0

= −bE0

2s
(
1− e−sT2

)
,

δ̇ = 2bE0

[(
1
4
− 2ξ

)
cos δ − ξ +

1
4

]
e−sT2 ,

wherein ξ varies from ξmin = 1/12 at δ = ±2πn to
ξmax = 1 at δ = ± arccos(−3/8)± 2πn.

The line ξ = ξ0 = 1/4 divides the channel into
two rectangles. Within the upper rectangle, all stream-
lines are nonclosed with initial and terminal points lo-
cating on the boundary line ξ = 1, along which the
stream-function changes periodically attaining its ex-
treme magnitudes at the points with the coordinates
ξ = 1, δ = ±πn (n = 0, 1, 2, ...) (Fig. 8), in so do-
ing the stream-lines with G0 = 0 separate the zones
where the value of G preserves its sign.

The curvilinear and rectilinear parts of the sep-
aratrixes intersect at the saddle-like stationary points
with coordinates ξ0 = 1/4 and δ0 = ±π/2 ± 2πn
(see Fig. 8) bounding the low rectangle into the zones
within which all stream-lines either are closed or non-
closed. Within the zones with closed stream-lines the
function G attains its extreme magnitudes equal to
1/96 at the center-like points with coordinates ξ =
ξ0 = 1

6 , δ = δ0 = ±2πn corresponding to stable sta-
tionary motions. Along the non-closed stream-lines

amplitudes are changed periodically, while the phases
vary aperiodically and phase fluid points move along
the positive direction.

Along the low boundary ξ = 0 withG0 = −1/32
the phase modulated regime is realized

ξ(T2) = ξ0 = 0 ,

tan
(

1
2
δ

) ∣∣∣δ
δ0

=
bE0

2s
(
1− e−sT2

)
,

in so doing the phase velocity vδ varies periodically
from 0 at the points δ = ±π ± 2πn to the maximal
magnitude at the points δ = ±2πn.

From the curves showing the phase velocity dis-
tribution at different levels of amplitudes it is seen that
all curves intersect at the points with δ = ±2π/3 ±
2πn.

Now we will proceed to the subcase when all
parameters Ki (i = 1, 2, 3) are nonzero, namely:
K1b

−1 = K2b
−1 = K3b

−1 = 1. Then the stream
function (22) takes the form

G(ξ, δ) = (
1
4
−ξ)ξ cos δ−(

1
4
−ξ)2+

1
2
ξ2 = G0(ξ0, δ0).

The stream-lines of the phase fluid in the phase
plane ξ−δ are presented in Fig. 9. Reference to Figure
9 shows that the infinite channel (−∞ < δ < ∞)
bounded by the lines ξ = 0 and ξ = 1 is divided into
two rectangles by the lines ξ = 1

4 and δ = ±π
2 ±

2πn (n = 0, 1, 2, ...).
In the case under consideration, the velocities of

the phase fluid particles could be calculated as follows

vξ = ξ̇ = 2bE0

(
1
4
− ξ
)
ξ sin δ e−sT2 ,

vδ = δ̇ = 2bE0

[(
1
4
− 2ξ

)
cos δ − ξ +

1
2

]
e−sT2 .

Along the rectilinear part of the separatrixes with
G(ξ, δ) = 1/32, i.e. along the line ξ = 1/4, the phase
modulated regime is realized:

ξ(T2) = ξ0 =
1
4

cot
(

1
2
δ

) ∣∣∣δ
δ0

= −bE0

2s
(
1− e−sT2

)
.

Along the low boundary ξ = 0 the second phase
modulated regime is realized:

ξ(T2) = ξ0 =
1
4

2√
3

arctan
tan

(
1
2 δ
)

√
3

∣∣∣δ
δ0

=
bE0

2s
(
1− e−sT2

)
.
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Figure 8: Phase portrait for the case of the additive combinational internal resonance atK1b
−1 = 1,K2 = K3 = 0,

and c1 = c2 = 1
4 , c3 = 0

Within the low rectangle bounded by the lines
ξ = 0 and ξ = 1/4 all stream-lines are nonclosed, and
the phase fluid flows with positive phase velocities.
Non closed stream-lines correspond to vibratory mo-
tions with amplitudes varying periodically and phases
varying aperiodically.

The curvilinear parts of the separatrixes are con-
nected with its rectilinear part at the saddle-like points
with coordinates ξ0 = 1/4, δ0 = ±2πn. Within the
upper rectangle the curvilinear separatrixes divide it
into zones wherein the phase fluid flows in one di-
rection. As this takes place, in the upper rectangles
all stream-lines are nonclosed with initial and termi-
nal points locating on the boundary line ξ = 1, along
which the stream-function changes periodically at-
taining its extreme magnitudes at the points with the
coordinates ξ = 1, δ = ±πn (n = 0, 1, 2, ...) (Fig. 9).

3.2.2 The Subcase c1 = 2
5 , c2 = 3

5 , c3 = −1
4

First we will study the subcase when K1b
−1 = 1,

while K2 = K3 = 0. Then the stream function (22)
takes the form

G(ξ, δ) =
(
ξ − 1

4

)√(
2
5
− ξ
)(

3
5
− ξ
)

cos δ

− 1
2

(
2
5
− ξ
)2

= G0(ξ0, δ0),

and the velocities of the phase fluid particles could be
calculated as follows

vξ = ξ̇ = 2bE0

(
ξ − 1

4

)√(
2
5
− ξ
)(

3
5
− ξ
)

× sin δ e−sT2 ,
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Figure 9: Phase portrait for the case of the additive combinational internal resonance at K1b
−1 = K2b

−1 =
K3b

−1 = 1, and c1 = c2 = 1
4 , c3 = 0

vδ = δ̇ = 2bE0

{[√(
2
5
− ξ
)(

3
5
− ξ
)

−
(
ξ − 1

4

)
(1− 2ξ)

2
√(

2
5 − ξ

) (
3
5 − ξ

)
 cos δ

+
(

2
5
− ξ
)}

e−sT2 .

The stream-lines are presented in Figure 10, from
which it is evident that horizontal rectilinear separa-
trixes ξ = 1/4, ξ = 2/5, and ξ = 3/5 remain the
same as in the case shown in Figure 7 with the only
difference that the magnitudes of the stream-function
G now equal, respectively, to -9/800(=-0.01125), 0,
and -1/50(=-0.02).

If one of the coefficients Ki (i = 1, 2, 3) is
nonzero, then, as it takes place in the case under
consideration, vertical rectilinear separatrixes trans-

form to curvilinear ones. Thus, in the upper zone
of the infinite channel (−∞ < δ < ∞) bounded
by the lines ξ = 3/5 and ξ = 1, the separatrixes,
along which G = −0.02, connect these boundary
lines at the points with the coordinates ξ = 1, δ =
±0.3566π ± 2πn (n = 0, 1, 2, ...) and ξ = 3/5,
δ = ±π/2 ± 2πn (n = 0, 1, 2, ...), in so doing
they separate the upper zone in subzones within which
the phase fluid moves in one direction: clockwise or
counter-clockwise. In each such a subzone all stream-
lines are nonclosed with initial and terminal points lo-
cating on the boundary line ξ = 1, along which the
stream-function changes periodically attaining its ex-
treme magnitudes at the points with the coordinates
ξ = 1, δ = ±πn (n = 0, 1, 2, ...) (Fig. 10).

In the middle and bottom zones there are two
types of curvilinear separatrixes along which G = 0
and -0.01125, between which in the middle zone there
exist nonclosed stream-lines corresponding to peri-
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Figure 10: Phase portrait for the case of the additive combinational internal resonance at K1b
−1 = 1, K2 = K3 =

0, and c1 = 2
5 , c2 = 3

5 , c3 = −1
4

odic changes of amplitudes and aperiodic changes of
phase difference.

The stream-lines with G = 0 separate in the mid-
dle zone the subzones wherein closed stream-lines
surround the center-like points with the coordinates
ξ = 0.356, δ = ±2πn (n = 0, 1, 2, ...), and Gmax =
0.01. The curvilinear parts of the separatrixes with
G = 0 are connected with the corresponding rectilin-
ear part ξ = const = 2/5 at the points with ξ = 2/5,
δ = ±π/2 ± 2πn (n = 0, 1, 2, ...), in so doing the
phase fluid particle moves in the counter-clockwise
direction from the point ξ = 2/5, δ = −π/2 to
the point ξ = 2/5, δ = π/2, crossing the minimal
point on this separatrix with coordinates ξ = 0.285,
δ = ±2πn (n = 0, 1, 2, ...).

The curvilinear separatrixes with G = −0.01125
intersect the rectilinear separatrix ξ = const = 1/4
at the saddle-like points with coordinates ξ = 1/4,

δ = ±0.727π ± 2πn (n = 0, 1, 2, ...), their initial
and terminal points locate on the boundary line ξ = 0
at δ = ±0.6897π ± 2πn (n = 0, 1, 2, ...), and the
uppermost points have coordinates ξ = 0.363, δ =
±0.6897π ± 2πn (n = 0, 1, 2, ...).

Along the line ξ = 1/4 the phase modulated
regime takes place

ξ(T2) = ξ0 =
1
4
,

1√
b2 − a2

ln
∣∣∣(b− a) tan δ

2 +
√
b2 − a2

(b− a) tan δ
2 −
√
b2 − a2

∣∣∣δ
δ0

=
2bE0

s

(
1− e−sT2

)
,

where a = 3/20, and b =
√

21/20.
Within the middle zone these separatrixes bound

the closed stream-lines surrounding the center-line

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Y. A. Rossikhin, M. V. Shitikova, J. C. Ngenzi

E-ISSN: 2224-3429 274 Volume 10, 2015



points with ξ = 0.3107, δ = ±π ± 2πn (n =
0, 1, 2, ...). Within the bottom zone, separatrixes with
G = −0.01125 divide it into subzones where phase
fluid particles move in one direction: clockwise or
counter-clockwise. In each such a subzone all stream-
lines are nonclosed with initial and terminal points lo-
cating on the boundary line ξ = 0, along which the
stream-function changes periodically attaining its ex-
treme magnitudes at the points with the coordinates
ξ = 0, δ = ±πn (n = 0, 1, 2, ...) (Fig. 10).

Now we will proceed to the subcase when all
parameters Ki (i = 1, 2, 3) are nonzero, namely:
K1b

−1 = K2b
−1 = K3b

−1 = 1. Then the stream
function (22) takes the form

G(ξ, δ) =
(
ξ − 1

4

)√(
2
5
− ξ
)(

3
5
− ξ
)

cos δ

− 1
2

(
2
5
− ξ
)2

− 1
2

(
3
5
− ξ
)2

+
1
2

(
ξ − 1

4

)2

The stream-lines are presented in Figure 11, from
which it is evident that horizontal rectilinear separa-
trixes ξ = 1/4, ξ = 2/5, and ξ = 3/5 remain the
same as in the cases shown in Figures 7 and 10 with
the only difference that the magnitudes of the stream-
function G now equal, respectively, to -29/400(=-
0.0725), -7/800(=-00875), and 33/800(=0.04125).

The velocities of the phase fluid particles could be
calculated in this case as follows

vξ = ξ̇ = 2bE0

(
ξ − 1

4

)√(
2
5
− ξ
)(

3
5
− ξ
)

× sin δ e−sT2 ,

vδ = δ̇ = 2bE0

{[√(
2
5
− ξ
)(

3
5
− ξ
)

−
(
ξ − 1

4

)
(1− 2ξ)

2
√(

2
5 − ξ

) (
3
5 − ξ

)
 cos δ

+
(

3
4
− ξ
)}

e−sT2 .

In the upper zone of the infinite channel (−∞ <
δ < ∞) bounded by the lines ξ = 3/5 and ξ = 1,
the separatrixes, along which G = 0.04125, connect
these boundary lines at the points with the coordinates
ξ = 1, δ = ±0.4829π ± 2πn (n = 0, 1, 2, ...)
and ξ = 3/5, δ = ±π/2 ± 2πn (n = 0, 1, 2, ...),
in so doing they separate the upper zone in subzones
within which the phase fluid moves in one direction:
clockwise or counter-clockwise. In each such a sub-
zone all stream-lines are nonclosed with initial and

terminal points locating on the boundary line ξ = 1,
along which the stream-function changes periodically
attaining its extreme magnitudes at the points with
the coordinates ξ = 1, δ = ±πn (n = 0, 1, 2, ...)
(Fig. 11).

In the middle zone nearby its upper boundary line
ξ = 2/5 there exist center-like points with coordi-
nates ξ = 0.3927, δ = ±2πn (n = 0, 1, 2, ...)
and Gmin = −0.017 located within narrow subzones
separated by the curvilinear separatrixes with G =-
0.00875, which are connected with the correspond-
ing rectilinear separatrix ξ = 2/5 at the points with
ξ = 2/5, δ = ±π/2± 2πn (n = 0, 1, 2, ...).

In the bottom zone bounded by the lines ξ = 0
and ξ = 1/4 one part of the nonclosed streamlines
with initial and terminal points located at the lower
boundary ξ = 0 is separated from the other nonclosed
infinitely long stream-lines located nearby the recti-
linear separatrix ξ = 1/4 is separated by the stream-
line with G = −0.1063 and with initial and terminal
points ξ = 0, δ = ±π ± πn (n = 0, 1, 2, ...).

Along the line ξ = 1/4 the phase modulated
regime takes place

ξ(T2) = ξ0 =
1
4
,

2√
a2 − b2

arctan
(a− b) tan δ

2√
a2 − b2

∣∣∣δ
δ0

=
2bE0

s

(
1− e−sT2

)
,

where a = 1/2, and b =
√

21/20.

4 Conclusion
The proposed analytical approach for investigating the
damped vibrations of a nonlinear plate in a fractional
derivative viscoelastic medium subjected to the com-
binational internal resonances of additive-difference
type has been possible owing to the new procedure
suggested recently in [6, 7], resulting in decoupling
linear parts of equations with further utilization of the
method of multiple scales for solving nonlinear gov-
erning equations of motion.

The phenomenological analysis carried out for
the additive combinational internal resonance using
the phase portraits constructed for different magni-
tudes of the plate parameters reveals the great va-
riety of vibrational motions: stationary vibrations,
two-sided energy exchange between two subsystems,
and complete one-sided energy transfer. The analysis
of the phase portraits for various oscillatory regimes
shows that they contain closed and non-closed stream-
lines separated by the rectilinear and curvilinear sep-
aratrixes, along which analytic solutions have been
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Figure 11: Phase portrait for the case of the additive combinational internal resonance at K1b
−1 = K2b

−1 =
K3b

−1 = 1 and c1 = 2
5 , c2 = 3

5 , c3 = −1
4

found, which define the irreversible energy transfer
from one subsystem into another and are inherently
soliton-like solutions in the theory of vibrations.

The location of horizontal rectilinear separatrixes
is defined by the constants of integration ci (i =
1, 2, 3) governed by the initial conditions. These con-
stants not only govern the distribution of the initial
energy between the modes coupled by the additive in-
ternal resonance, but also influence the type of stream-
lines locating between horizontal separatrixes, in so
doing the magnitudes of ci do not change the rectilin-
ear character of the horizontal separatrixes. The co-
efficients Ki (i = 1, 2, 3), which depend on the fre-
quencies of interacting modes and on plate’s param-
eters, define the character of separatrixes connecting
the boundaries ξ = 0 and ξ = 1. If all coefficients
Ki = 0, then all separatrixes are pure vertical, but if at
least one of them is nonzero, then vertical separatrixes
transform into curvilinear separatrixes, the initial and

terminal points of which locate on horizontal separa-
trixes and/or on boundary lines ξ = 0 and ξ = 1.
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